CONECTOR SERIE 195 CRIMP BNC HEMBRA

50 DC ~ 4

500

(Condición de prueba D) MIL-STD. 202 Método 106

CONECTOR

Tipo de conector: BNC - HEMBRA

Descripción:

AIR802 ° modelo CN2BNCF es un conector BNC o conector coaxial hembra de tamaño para adaptarse RG58, AIR802 ° CA195, Times Microwave LMR195 ° y Belden ° 8240/8219, series 195 de alta precisión y de rendimiento, Los conectores tipo N son fabricados en versiones de 50 y 75 ohms. Nuestros conectores tipo N son de 50 ohms.. La seleccion del conector es muy importante para asegurar el funcionamiento y la fiabilidad del producto. Adaptadores y / o conectores mal construidos causarán mayor VSWR y pérdida de inserción resultante en el ruido eléctrico y problemas intermitentes.

CN2BNCF

CARACTERISTICAS

Contrucción		Electricas
• Cuerpo Material	Latón niquelado	Impedancia (Ohms)Rango de Frecuencia (GHz)Voltaje
• Contacto Material	Latón chapado en oro	Voltaje Máximo (Vrms)Pérdida de Inserción
• Aislante Material	TFE	Ambiental
• Contera Material	Latón niquelado	TemperaturaRoHS
Mecanicas		Corrosión
 Accesorio cable 	Hex Braid Crimp	2 2011 2011
Adjunto del conductor central	Soldadura	 Ciclos de Temperatura
• La retención de cable	30 lbs. Halar	• Altitud
Apareamiento	2-perno de acoplamiento de bayoneta	Vibración Resistencia a la humedad
• Par de apareamiento	15 pulgadas libras Max.	nesseria di la mamedad

 Voltaje Máximo (Vrms) Pérdida de Inserción 	1500 0,20 dB Max.	
Ambiental		
• Temperatura	-67 ° F a 185 ° F (-55 ° C a 85 ° C)	
• RoHS	Si	
• Corrosión	MIL-STD. 202 Método 101 (Test Condición B)	
• Ciclos de Temperatura	MIL-STD. 202 Método 102 (Test Condición D)	
Altitud	MIL-STD. 202 Método 105 (Test Condición C)	
Vibración	MIL-STD. 202 Método 204	